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Pressure statistics for locally isotropic turbulence
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The pressure structure functionDP(r ) and pressure-gradient correlationAi j (rW) are related to components of
the fourth-order velocity structure functionDi jkl (rW) on the basis of the Navier-Stokes equation, incompress-
ibility, local homogeneity, and local isotropy. Data from a wind tunnel, as well as numerical simulation, are
used to calculateDP(r ) and thereby show that greater Reynolds numbers are needed to observe an inertial
range inDP(r ) than in Di jkl (rW). A previous additional supposition relatesDP(r ) and Ai j (rW) to the single
componentD1111(r ). This additional supposition is shown to be inaccurate for calculation ofDP(r ) and
Ai j (rW). @S1063-651X~97!50809-9#

PACS number~s!: 47.27.Gs
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Consider turbulent flow in which kinematic pressure isP
and a velocity component isui . The pressure structure func
tion is defined byDP(r )[^(P2P8)2&, where rW5xW2xW8 is
the separation vector between two pointsxW and xW8 and r
5urWu. Quantities are primed or unprimed if they are eva
ated atxW or xW8, respectively. Angle brackets denote an av
age. This structure function has been studied theoretically
several investigators@1–8#. The assumption of joint Gauss
ian velocities or velocity derivatives was used in@2–6#. This
joint Gaussian assumption is abbreviated JGA. The pres
structure function, or its spectrum, has also been studied
perimentally @6,9,10# and by means of direct numerica
simulation~DNS! of the Navier-Stokes equation@11,12#. The
pressure structure function is closely related to the press
gradient correlationAi j (rW), the mean-squared pressure g
dient, and, of course, to the pressure correlation@4,5,7,8#.
The pressure-gradient correlation is the dominant term in
correlation of fluid-particle acceleration for high-Reynold
number turbulence@3–5,13#. Reynolds number is denoted R
and is the root-mean-squared streamwise velocity compo
multiplied by Taylor’s scale and divided by kinematic vi
cosity.

Under the assumptions of local isotropy, local homoge
ity, incompressibility, and by use of the Navier-Stokes eq
tion, DP(r ) is related to the fourth-order velocity structu
function@7,8#. The relationship, valid for any Reynolds num
ber, is@7,8#

DP~r ![2 1
3 D1111~r !

1 4
3 r 2E

r

`

y23@D1111~y!1Dbbbb~y!26D11gg~y!#dy

1 4
3 E

0

r

y21@Dbbbb~y!23D11gg~y!#dy, ~1!

where the fourth-order structure function isDi jkl (rW)[^(ui

2ui8)(uj2uj8)(uk2uk8)(ul2ul8)&, and wherei , j , k, or l is
1 if the velocity component is parallel to the separation v
tor rW, and 2 or 3 for the orthogonal velocity componen
perpendicular torW. Subscriptsb or g each denote either 2 o
3.
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Now, Eq. ~1! and related equations for pressure-gradi
correlation@7,8# could be significantly simplified if relation-
ships exist between the components ofDi jkl (rW), similar to
the relationships between components of the second-o
structure functionDi j (rW), and between components of th
third-order structure functionDi jk(rW). Those latter relation-
ships are based on the fact that the first-order divergenc
Di j (rW) vanishes and the second-order divergence ofDi jk(rW)
vanishes. These divergences vanish on the basis of inc
pressibility and local homogeneity. An additional simplific
tion based on local isotropy is then used to simplify t
relationships. However, no such incompressibility relatio
ship exists between components ofDi jkl (rW) because the
fourth-order divergence ofDi jkl (rW) does not vanish@7,8#;
therefore, no order of divergence ofDi jkl (rW) vanishes.

On the basis of an analogy with relationships betwe
second- and third-order structure functions, Ould-Rouiset al.
@14# supposed the relationships

D11gg
OAZA~r !5

1

3 S 11
r

4

d

dr DD1111~r ! ~2a!

and

Dbbbb
OAZA~r !53S 11

r

4
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dr DD11gg
OAZA~r !

5S 11
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4
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dr D S 11
r

4

d

dr DD1111~r !. ~2b!

The superscript OAZA is a mnemonic for the authors
@14–16#; the superscript is omitted fromD1111(r ) because it
is obtained from data and thereby generates the other c
ponents. If these relationships prove accurate, then they h
utility. One use investigated in@15# is the simplification of
pressure statistics such asDP(r ). For instance, Eqs. 2~a! and
2~b! substituted in Eq.~1! give @15#

Dp
OAZA~r !5

r 2

3 E
r

`

y23D1111~y!dy2 1
6 D1111~r !. ~3!
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Another use of Eqs. 2~a! and 2~b! would be for the calcula-
tion of corrections to Taylor’s hypothesis because the cor
tion of Di jkl (rW) given in @17# depends on measurements
D1111(r ), Dbbbb(r ), andD11gg(r ).

Properties of Eqs. 2~a! and 2~b! are as follows. These
equations agree in the limitr→0 with the relationships be
tween fourth-order moments of velocity derivatives that
given in @18#. They agree in the limitr→` with relation-
ships betweenD1111(`), Dbbbb(`), and D11gg(`), as
given in @7,8#. Those two limit properties atr→0 and `
result from the choice in@14# of values for constants tha
they introduce. The ratios of components for spacings in
inertial range are @7,8# Hbb[Dbbbb(r )/D1111(r ) and
H1g[D11gg(r )/D1111(r ). Equations 2~a! and 2~b! give the
valuesHbb

OAZA5 16
9 andH1g

OAZA5 4
9 for the inertial range. These

values are in reasonable agreement with measurements@8#.
There are reasons to be cautious regarding the accura

Eqs. 2~a! and 2~b! for use in Eq.~1!. In @7,8#, it was found
that there is cancellation between terms in Eq.~1!. This fact
places stringent requirements on the accuracy of Eqs.~a!
and 2~b!. According to@15#, isotropy is the only assumptio
used in@14# to obtain Eqs. 2~a! and 2~b! but careful reading
of @14# reveals that isotropy constrains Eqs. 2~a! and 2~b! at
only r 50 and r→`. Proof of the usefulness of Eqs. 2~a!
and 2~b! requires experiment or direct numerical simulatio
Some aspects of Eqs. 2~a! and 2~b! have been tested in
@15,16#, but demonstration of the accuracy of Eqs. 2~a! and
2~b! for calculating pressure statistics was inadequate. In
3 of @16#, the comparison ofD2222(r ) obtained from Eqs.
2~a! and 2~b! with data forD2222(r ) shows seemingly sig
nificant inaccuracy that@16# attributes to anisotropy, but in
accuracy of Eqs. 2~a! and 2~b! might be the cause. In@7,8#,
the ratio of the mean-squared pressure gradient^u] i Pu2& to
the integral 4*0

`r 23D1111(r )dr is denoted byHx . In @8#, the
valuesHx50.36 and 0.2 were estimated for very small a
large Re, respectively. Although it seems thatHx must vary
with Re, Eqs. 2~a! and 2~b! imply the single valueHx

OAZA

50.25 @15#, which suggests that accuracy of Eqs. 2~a! and
2~b! might be limited. The discrepancy betweenHx50.36
for low Re andHx

OAZA50.25 suggests that, in the dissipatio
range, DP(r ) is greater thanDP

OAZA(r ) by a factor of
0.36/0.2551.44 for the case of low Re. Indeed, this discre
ancy is observed in Fig. 2 of@15#, wherein one sees, at dis
sipation range spacings, that the normalized values ofDP(r )
from DNS at Re533 are about 40–50 % greater than fro
use of Eq.~3! with wake data at Re540.

These cautions led us to compareDP(r ) with DP
OAZA(r )

and compare the corresponding predictions for the press
gradient correlation. Nearly isotropic turbulence genera
by a grid in a wind tunnel, as well as from direct numeric
simulation, was used for this purpose. First, the gr
generated turbulence is described. AnX-configuration hot-
wire anemometer measured the streamwise velocity com
nent, as well as one cross-stream component. Th
components are assigned the subscripts 1 and 2, respect
i.e., b5g52. The wires were accurately oriented and ca
brated such that̂u2& was only 1.5% of̂ u1&. The velocity
covariances werê (u1)2&50.135 m2 s22, ^(u2)2&50.119
m2 s22, and^u1u2&520.0036 m2 s22, which show that the
turbulence was nearly isotropic. The second- and fou
c-
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order structure-function componentsD11(r ), D22(r ),
D1111(r ), D2222(r ), and D1122(r ) were calculated from the
measured velocities. The numerators of the rat
D12(r )/D11(r ), D1112(r )/D1111(r ), and D1222(r )/D1111(r )
should be zero in isotropic turbulence. These ratios were
than 0.02 for r ,10 cm. For locally isotropic turbulence
(r /2)dD11(r )/dr1D22(r )2D11(r ) should vanish; it is at
most 0.015D11(r ) for r ,6 cm, further verifying the accu-
racy of local isotropy for the present data. Kolmogorov
microscaleh was 0.31 mm, Taylor’s scale was 8.5 mm, t
integral scale was 10.8 cm@19#, and Re5208. The hot wires
were 1.2 mm long. The signals were filtered at 5 kHz. D
were sampled at 10 kHz, and the mean velocity w
10.1 m s21, so the samples were effectively spaced abou
mm in the streamwise direction. Further experimental det
are in @13,19#.

Precautions were taken to assure that the data could
used to evaluate the formulas. Because of the spatial ave
ing by the anemometer and the temporal filtering, redu
credibility must be given to the statistics atr<1 mm. Cor-
rection for inaccuracy of Taylor’s hypothesis@17# showed
negligible corrections to the calculated pressure statistic
well as to the structure functions@13#. Because of the
dissipation-range spectral bump@20–22#, the data do not
have an inertial range; this bump and the proximity of t
energy-containing range give the measured velocity sp
trum an apparent power law with an exponent of about2 5

3

10.19 @13#. Although Re is not large enough for th
asymptotic inertial range to fully develop, the appare
power law extends over a factor of 14 in wave number~cf.
Fig. 1 of @19#!. That is evidence of significant separation
energy-containing and dissipation scales such that infere
can be made about the appearance of or lack of a corresp
ing power law inDP(r ).

The numerical simulation was a solution of the Navie
Stokes equations in three dimensions using the Fourier p
dospectral method. The resolution was 3003, which is
equivalent to a resolution of 12003, considering flow sym-
metrics. Statistics were calculated from the 3003 data points
at Re582. Details of the simulation were given in@23#. Vari-
ances of all three velocity components are equal. The qu
tity ( r /2)dD11(r )/dr1D22(r )2D11(r ) should vanish by lo-
cal isotropy; it is, at most, 0.028D11(r ) for r /h,70, and
beyondr /h,70, it increases linearly to 0.16D11(r ) at r /h
5100. Thus, local isotropy is excellent forr /h,70, but de-
grades gradually forr /h.70.

Figure 1 showsDP(r ) from Eq. ~1!, as well as from the
JGA, denotedDP

JG(r ), DP
OAZA(r ) from Eq. ~3!, the second

and third terms in Eq.~1!, and the absolute value of the firs
term in Eq.~1!. The formula forDP

JG(r ) is given in @7# and
need not be repeated here. Curves in Fig. 1 extend ove
range ofr for which we have confidence in local isotrop
according to the second-order incompressibility test~i.e.,
r /h,200 for the wind tunnel data andr /h,80 for the simu-
lation!. For the wind tunnel data,DP

OAZA(r ) from Eq. ~3! is
consistently about a factor of 3 smaller thanDP(r ) from Eq.
~1!, but both curves have nearly the same slope. A sim
observation holds for the simulation, with the exception
the rapid decrease ofDP

OAZA(r ) as r /h increases. At most
spacings in Fig. 1,DP

OAZA(r ) is closer toDP
JG(r ) than is

DP(r ).
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Of particular importance is the comparison in Fig. 1
DP(r ) computed directly from the simulation’s pressure d
ferences withDP(r ) from the simulation’sDi jkl (rW) substi-
tuted in Eq.~1!. The difference between these two curves
Fig. 1 is caused by slight local anisotropy in the simulatio
and this difference is seen to be very much smaller than
departure ofDP

OAZA(r ) from DP(r ). Therefore, the disagree
ment of DP

OAZA(r ) with data~simulation or wind tunnel! is
not caused by any limitation of the computational or me
surement methods.

The first term in Eq.~1! cancels by subtraction from th
sum of the second and third terms such thatDP(r ) is no less
than about one-third of the largest magnitude term~the third!
anywhere in Fig. 1. Thus, the wind tunnel data are adequ
for evaluation of Eq.~1!. For r /h.30 in Fig. 1, the first term
@and thereforeD1111(r )# has a slope of roughly (4/3
22(0.19) for the wind tunnel data, which is a somewh
shallower slope than for a fully developed inertial range

FIG. 1. Upper panel from the simulation; lower panel from t
wind tunnel data. Thick curves are the pressure structure func
———, DP(r ), Eq. ~1!; ––––, DP

OAZA(r ), Eq. ~3!; ----------,
DP

JG(r ). Thin curves are the three terms contributing toDP(r ) in
Eq. ~1!: ––––, first term; ———, second term; -----------, third
term. In the upper panel, the dotted curve isDP(r ) directly calcu-
lated from the simulation’s pressure differences.
f

,
e

-

te

t
t

is commensurate with the apparent power law of the w
tunnel velocity spectrum~in Fig. 1 of @19#!. For r /h.30 in
Fig. 1, DP(r ) has a significantly shallower slope~for both
the simulation and wind tunnel data! than the first term@i.e.,
D1111(r )/3# because of the cancellation of the first and th
terms of Eq.~1! ~the second term is negligible forr /h.30!.
Compared with the approach ofD1111(r ) toward its inertial-
range behavior, the shallower slope ofDP(r ) indicates that a
greater Re is needed forDP(r ) to approach its inertial-range
behavior. Independent of intermittency effects, Eq.~1! im-
plies thatDP(r ) has inertial-range behavior similar to that
Di jkl (rW) @7,8#.

Components of the pressure-gradient correlation,
Ai j (rW)5^(] i P)(] j8P8)&, can be obtained fromDP(r ), as fol-
lows @5,7,8#:

Agg~r !5
1

2r

dDP~r !

dr
, A11~r !5

1

2

d2DP~r !

dr2 . ~4!

The corresponding formulas in terms ofDi jkl (rW) are easily
obtained by differentiating Eqs.~1! and ~3! and need not be
given here. For Eq.~1!, the formulas are given in@7,8,13#,
and for the JGA, the formulas are in@7,13#. Figure 2 shows
the comparison ofA22(r ) andA11(r ) obtained from Eqs.~1!
and~4! with A22

OAZA(r ) andA11
OAZA(r ) from Eqs.~3! and~4!.

Although the DNS data are not shown in Fig. 2, those d
corroborate the wind tunnel results, as expected from Eq.~4!
and the slopes of the curves in the upper panel of Fig
Consistent with the factor of 3 difference betweenDP(r ) and
DP

OAZA(r ) and the near equality of their slopes for the win
tunnel data in Fig. 1, the two sets of curves in Fig. 2 ha
nearly the same shape but differ by a factor of about 3. T
inset figure of Fig. 2 shows components ofAi j

OAZA(rW) from
Eqs.~3! and~4! compared withAi j

JG(rW) from the JGA. These
components ofAi j

OAZA(rW) and Ai j
JG(rW) have commensurate

n:

FIG. 2. Pressure-gradient correlation from wind tunnel da
———, A11(r ); ––––, A11

OAZA(r ); — — —, A22(r ); ----------,
A22

OAZA(r ). In the inset of the figure: ———,A11
JG(r ); ––––,

A11
OAZA(r ); — — —, A22

JG(r ); ---------, A22
OAZA(r ).
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values but somewhat different shapes, as one would ex
from the wind tunnel data in Fig. 1 and Eq.~4!. ThatA22(r )
is monotonically decreasing with increasingr in Fig. 2 is
expected@8,13# on the basis of the monotonic increase
DP(r ). That A11(r ) has a minimum where it is negative
required on the basis of local isotropy combined with the f
that the curl of the gradient is zero@13#.

In conclusion, an inertial range inDP(r ) will be of more
limited extent than inDi jkl (rW) because of the cancellatio
between terms in Eq.~1!. In @14#, Eqs. 2~a! and 2~b! are not
shown to be exact in any asymptotic case, such as for i
ropy or Re→`, except atr 50 and r→` for the isotropic
case; therefore, data must be used to check applicabilit
an

id

J

ct

f

t

t-

of

Eqs. 2~a! and 2~b!. Data presented here show that Eqs. 2~a!
and 2~b! are not accurate for calculation ofDP(r ) or Ai j (rW)
for the Reynolds number Re5208 or 82. As noted, the dat
employed have a significant separation of energy-contain
scales from dissipation scales and an apparent power la
therefore seems that applicability of Eqs. 2~a! and 2~b! to
calculation of pressure statistics might be of limited accura
for larger Re than 208. The 40–50 % discrepancy in Fig. 2
@15# between DP(r ) from numerical simulation and
DP

OAZA(r ) from wake data is noted for the case of low Re
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