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Pressure statistics for locally isotropic turbulence
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The pressure structure functi@y(r) and pressure-gradient correlatin () are related to components of
the fourth-order velocity structure functiddy;, () on the basis of the Navier-Stokes equation, incompress-
ibility, local homogeneity, and local isotropy. Data from a wind tunnel, as well as numerical simulation, are
used to calculat®p(r) and thereby show that greater Reynolds numbers are needed to observe an inertial
range inDp(r) than inDjj (7). A previous additional supposition relat€s(r) and A;;(f) to the single
componentD4444r). This additional supposition is shown to be inaccurate for calculatiod &fr) and
Ajj(r). [S1063-651X97)50809-9

PACS numbds): 47.27.Gs

Consider turbulent flow in which kinematic pressurePis Now, Eg.(1) and related equations for pressure-gradient
and a velocity component ig . The pressure structure func- correlation[7,8] could be significantly simplified if relation-
tion is defined byDp(r)=((P—P’)?), wheref=x—X' is  ships exist between the componentsyfy, (), similar to
the separation vector between two poitsand X' and r the relationships between components of the second-order
=|F|. Quantities are primed or unprimed if they are evalu-structure functionD;;(), and between components of the
ated atxX or X', respectively. Angle brackets denote an aver-third-order structure functio;;, (). Those latter relation-
age. This structure function has been studied theoretically bghips are based on the fact that the first-order divergence of
several investigatorgl—8]. The assumption of joint Gauss- Dj;(F) vanishes and the second-order divergenc®gf(r)
ian velocities or velocity derivatives was used #3-6]. This  vanishes. These divergences vanish on the basis of incom-
joint Gaussian assumption is abbreviated JGA. The pressug@essibility and local homogeneity. An additional simplifica-
structure function, or its spectrum, has also been studied exion based on local isotropy is then used to simplify the
perimentally [6,9,10 and by means of direct numerical relationships. However, no such incompressibility relation-
simulation(DNS) of the Navier-Stokes equati¢f1,12. The  ship exists between components Dfj, () because the
pressure structure function is closely related to the pressurdeurth-order divergence obDj;y, () does not vanistj7,8];
gradient correlatiorA;; (1), the mean-squared pressure gra-therefore, no order of divergence Dfj () vanishes.
dient, and, of course, to the pressure correlafiéss,7,8. On the basis of an analogy with relationships between
The pressure-gradient correlation is the dominant term in theecond- and third-order structure functions, Ould-Retial.
correlation of fluid-particle acceleration for high-Reynolds-[14] supposed the relationships
number turbulencg3-5,13. Reynolds number is denoted Re

and is the root-mean-squared streamwise velocity component 1 rd
multiplied by Taylor's scale and divided by kinematic vis- DIRZA(r) = 3 (1+ 7 E) Dyga4r) (2a)
cosity.

Under the assumptions of local isotropy, local homogene-
ity, incompressibility, and by use of the Navier-Stokes equa@nd
tion, Dp(r) is related to the fourth-order velocity structure
function[7,8]. The relationship, valid for any Reynolds num- D OAZA

ber, is[7,8] pppp(r) =3 1lyy

r d
1+ Z a) DOAZA(I')

1+

Dp(r)=—3Dy1441) _ r i
4 dr

r d
1+Za)D1111(r)- (2b)

"‘%rzf Y ¥ D1114(Y)+Dgppp(y)—6D11,,(y) 1dy
' The superscript OAZA is a mnemonic for the authors of
r [14-14; the superscript is omitted from,,14(r) because it
+%f Y D gppp(y) —3D11,,(y)1dy, (1) is obtained from data and thereby generates the other com-
0 ponents. If these relationships prove accurate, then they have
. o utility. One use investigated ifil5] is the simplification of
whe’re the f/ourth-orﬁjer strus:ture function g (F)=((u; pressure statistics such Bs(r). For instance, Eqs.(8) and
—U) (U~ U (U ud(u—up)), and wherd, j, k, orlis  54)7s haitited in Eq(1) give [15]
1 if the velocity component is parallel to the separation vec-
tor r, and 2 or 3 for the orthogonal velocity components 2
gerpendicular ta”. SubscriptsB or y each denote either 2 or DgAZA(r): % fr y 3D 1114(Y)dy—21D1(r).  (3)
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Another use of Egs. (@) and 2b) would be for the calcula- order structure-function component®,,(r), Djy(r),

tion of corrections to Taylor's hypothesis because the correc®1114(r'), D2yoAr), andD,,4{r) were calculated from the

tion of Dj;i () given in[17] depends on measurements of measured velocities. The numerators of the ratios

D1114(r), Dggpp(r), andDqy,,(r). D1x(r)/D1a(r), D11aAr)/Dy1a(r), and Dypofr)/Dyg15(r)
Properties of Egs. (@) and b) are as follows. These should be zero in isotropic turbulence. These ratios were less

equations agree in the limit—0 with the relationships be- E??Zn) doboz(r];c;:jrrig) C(T)' _FDor (lf)cas"r)]/o[ijgtr\c,)griﬁs#rti)tuliin;?
tween fourth-order moments of velocity derivatives that are 11 22 11 ’

. . . . . . most 0.01®,4(r) for r<6 cm, further verifying the accu-
given in[18]. They agree in the limit —c with relation- 0 of |ocal isotropy for the present data. Kolmogorov's

ships betweenD,;;(), Dpgggp(*), and Diy,\(*), 8  microscalen was 0.31 mm, Taylor's scale was 8.5 mm, the
given in [7,8]. Those two limit properties at—0 and>  jntegral scale was 10.8 cfi9], and Re=208. The hot wires
result from the choice iri14] of values for constants that were 1.2 mm long. The signals were filtered at 5 kHz. Data
they introduce. The ratios of components for spacings in thgyere sampled at 10 kHz, and the mean velocity was
inertial range are[7,8] Hgg=Dpggpp(r)/D1114(r) and  10.1ms?, so the samples were effectively spaced about 1
HlYEDlly%(r)/Dlm(r). Equations 2a) and 2b) give the  mm in the streamwise direction. Further experimental details
valuesH 95 = ¥ andH /"= § for the inertial range. These are in[13,19.
values are in reasonable agreement with measurerf@nts Precautions were taken to assure that the data could be
There are reasons to be cautious regarding the accuracy o$ed to evaluate the formulas. Because of the spatial averag-
Egs. 2a) and 2b) for use in Eq.(1). In [7,8], it was found ing by the anemometer and the temporal filtering, reduced
that there is cancellation between terms in Bg. This fact  credibility must be given to the statistics ra&1 mm. Cor-
places stringent requirements on the accuracy of E. 2 rection for inaccuracy of Taylor's hypothedi$7] showed
and 2b). According to[15], isotropy is the only assumption negligible corrections to the calculated pressure statistics as
used in[14] to obtain Egs. &) and 2b) but careful reading well as to the structure functiongl3]. Because of the
of [14] reveals that isotropy constrains Eq¢a)2and 2b) at  dissipation-range spectral bunjg0-23, the data do not
only r=0 andr—. Proof of the usefulness of Eqs(a2  have an inertial range; this bump and the proximity of the
and Zb) requires experiment or direct numerical simulation.energy-containing range give the measured velocity spec-
Some aspects of Eqgs(& and 2b) have been tested in trum an apparent power law with an exponent of abegt
[15,16], but demonstration of the accuracy of Eqé2and  +0.19 [13]. Although Re is not large enough for the
2(b) for calculating pressure statistics was inadequate. In Figasymptotic inertial range to fully develop, the apparent
3 of [16], the comparison 0D,,,Ar) obtained from Eqgs. power law extends over a factor of 14 in wave numfr
2(a) and Zb) with data forD,,,Ar) shows seemingly sig- Fig. 1 of[19]). That is evidence of significant separation of
nificant inaccuracy thdtl6] attributes to anisotropy, but in- energy-containing and dissipation scales such that inferences
accuracy of Egs. @) and 2b) might be the cause. Ifv,8], can be made about the appearance of or lack of a correspond-
the ratio of the mean-squared pressure gradiphP|?) to  ing power law inDp(r).
the integral 451 ~3D1,,4(r)dr is denoted byH, . In[8], the The numerical simulation was a solution of the Navier-
valuesH,=0.36 and 0.2 were estimated for very small andStokes equations in three dimensions using the Fourier pseu-
large Re, respectively. Although it seems tht must vary dospectral method. The resolution was %Z0@vhich is
with Re, Egs. 2a) and 2b) imply the single vaIueHSAZA equivalent to a resolution of 1280considering flow sym-
=0.25[15], which suggests that accuracy of Eqéa)2and  Metrics. Statistics were calculated from the B0ata points
2(b) might be limited. The discrepancy betweeh,=0.36  at Re=82. Details of the.simulation were given[ia3]. Vari-
for low Re andH 9"#"=0.25 suggests that, in the dissipation @nces of all three velocity components are equal. The quan-
range, Dp(r) is greater thanDS*?A(r) by a factor of tity (r/2)dD11(r)/dr+ Doo(r) —D14(r) should vanish by lo-
0.36/0.25= 1.44 for the case of low Re. Indeed, this discrep-Cal iSOtropy; it is, at most, 0.02B44(r) for r/#<70, and
ancy is observed in Fig. 2 ¢.5], wherein one sees, at dis- P8Yondr/#<70, it increases linearly to 0.1B,(r) atr/7
sipation range spacings, that the normalized valueBgf ) =100. Thus, local isotropy is excellent fof7<70, but de-

from DNS at Re=33 are about 40-50 % greater than from 9rades gradually for/5>70.
use of Eq.(3) with wake data at Re40. Figure 1 showdD(r) from Eq. (1), as well as from the

These cautions led us to compdde(r) with DSA?A(r)  JGA, Qenotedi)ﬁ_,e(r), DR"*(r) from Eq. (3), the second
and compare the corresponding predictions for the pressur@nd third terms in Eq(1), and theJaGbsoI_ute value of the first
gradient correlation. Nearly isotropic turbulence generatede™ in Eq.(1). The formula forDp(r) is given in[7] and
by a grid in a wind tunnel, as well as from direct numerical "eed not be repeated here. Curves in Fig. 1 extend over the
simulation, was used for this purpose. First, the grid-fange ofr for which we have confidence in local isotropy
generated turbulence is described. Xrconfiguration hot- according to the second-order incompressibility tést.,
wire anemometer measured the streamwise velocity compd/ 7<200 for the wind tunnel data and»<80 for the simu-
nent, as well as one cross-stream component. Thedation). For the wind tunnel date)2***(r) from Eq. (3) is
components are assigned the subscripts 1 and 2, respectivefgnsistently about a factor of 3 smaller thap(r) from Eq.

i.e., B=y=2. The wires were accurately oriented and cali-(1), but both curves have nearly the same slope. A similar
brated such thatu,) was only 1.5% ofu,). The velocity —observation holds for the simulation, with the exception of
covariances were((u;)2=0.135 n¥s % ((u,)?)=0.119 the rapid decrease @p**(r) asr/7 increases. At most
m?s 2, and(u,u,)=—0.0036 nfs 2, which show that the spacings in Fig. 1D9*#A(r) is closer toD3(r) than is
turbulence was nearly isotropic. The second- and fourthDp(r).
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. Fig. 1, Dp(r) has a significantly shallower slogéor both
1 the simulation and wind tunnel datthan the first ternji.e.,
4 f ] D4114(r)/3] because of the cancellation of the first and third
10 Lo g L 1stl= Punors ] terms of Eq.(1) (the second term is negligible fof > 30).
/ OT¢ . . . .
L« 0 , L . Compared with the approach bf;;,4(r) toward its inertial-
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range behavior, the shallower slopel®f(r) indicates that a

ri greater Re is needed f@rp(r) to approach its inertial-range
behavior. Independent of intermittency effects, Eh. im-

FIG. 1. Upper panel from the simulation; lower panel from the plies thatDp(r) has inertial-range behavior similar to that of
wind tunnel data. Thick curves are the pressure structure functiorD; () [7,8].
, Dp(r), Eq. (1); ————, DR*A(r), Eq. (3); Components of the pressure-gradient correlation, i.e.,

D,J,G(r). Thin curves are the three terms contributingDie(r) in Aij(r):«ai p)(aj’p’», can be obtained frop(r), as fol-

Eq. (1): ————, first term; , second term; ----------- » third 1ows [5,7,8:
term. In the upper panel, the dotted curveDig(r) directly calcu-
lated from the simulation’s pressure differences. 1 dDp(r) 1 d2D (r)
P P
A”(r)_ET' Aqyl r)—ET- (4)

Of particular importance is the comparison in Fig. 1 of
Dp(r) computed directly from the simulation’s pressure dif- _ _ R _
ferences withDp(r) from the simulation’sDjj(F) substi- ~ The corresponding formulas in terms bf;,(r) are easily
tuted in Eq.(1). The difference between these two curves inobtained by differentiating Eq¢1) and(3) and need not be
Fig. 1 is caused by slight local anisotropy in the simulation,given here. For Eq(1), the formulas are given ifi7,8,13,
and this difference is seen to be very much smaller than thand for the JGA, the formulas are i, 13]. Figure 2 shows
departure oDS*%A(r) from Dp(r). Therefore, the disagree- the comparlsoorkgf\zz(r) andoﬁ%%\(r) obtained from Eqs(1)
ment of DSA?A(r) with data(simulation or wind tunnglis ~ @nd(4) with Az;*"(r) andAj;"(r) from Eqs.(3) and (4).
not caused by any limitation of the computational or mea-/Although the DNS data are not shown in Fig. 2, those data
surement methods. corroborate the wind tunnel results, as expected from(4q.

The first term in Eq(1) cancels by subtraction from the @nd the slopes of the curves in the upper panel of Fig. 1.
sum of the second and third terms such fa(r) is no less ~ Consistent with the factor of 3 difference betwep(r) and
than about one-third of the largest magnitude téitme third ~ Dp (1) and the near equality of their slopes for the wind
anywhere in Fig. 1. Thus, the wind tunnel data are adequaténnel data in Fig. 1, the two sets of curves in Fig. 2 have
for evaluation of Eq(1). Forr/%>30 in Fig. 1, the first term hearly the same shape but differ by a factor of about 3. The
[and thereforeD,;;(r)] has a slope of roughly (4/3) inset figure of Fig. 2 shows components Af"““(r) from
—2(0.19) for the wind tunnel data, which is a somewhatEgs.(3) and(4) compared withA]%(F) from the JGA. These
shallower slope than for a fully developed inertial range butcomponents ofAi?AZA(r”) and AijG(F) have commensurate
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values but somewhat different shapes, as one would expeEigs. Za) and 2b). Data presented here show that Eqgs) 2
from the wind tunnel data in Fig. 1 and E@). ThatA,(r)  and 2b) are not accurate for calculation Bfs(r) or A;;(F)

is monotonically decreasing with increasingin Fig. 2 is  for the Reynolds number Re208 or 82. As noted, the data
expected8,13] on the basis of the monotonic increase of employed have a significant separation of energy-containing
Dp(r). ThatA.(r) has a minimum where it is negative is scales from dissipation scales and an apparent power law. It

required on the basis of local isotropy combined with the facfnerefore seems that applicability of Eqsazand 2b) to
e calculation of pressure statistics might be of limited accuracy
that the curl of the gradient is zefa&3].

In conclusion, an inertial range Dp(r) will be of more for larger Re than 208. The 40-50 % discre_pancy_ in Fig. 2 of
limited extent tr;an inDjiy (1) becauspe of the cancellation [1312Abetween D (r) from numerical simulation and

I
between terms in Ec[l).JIn [14], Egs. 2a) and b) are not Dp""(r) from wake data is noted for the case of low Re.
shown to be exact in any asymptotic case, such as for isot- The authors thank S. T. Thoroddsen for use of the data.
ropy or Re—, except atr =0 andr—o for the isotropic  This work was partially supported by ONR Contract No.
case; therefore, data must be used to check applicability df00014-93-F-0038.
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